Concentration of Point Defects
- need some thermodynamics ≡ science of observation
"energy" tends towards a minimum
"entropy" randomness tends towards a maximum
type of energy depends on variables controlled
e.g. can't control both P & V (one or the other)
usually control P
also, usually control T \[\Rightarrow \] Gibbs free energy
\[G = E + PV - TS \] entropy
↑ absolute temp

• point defects: ↑ S and ↓ G ⇒ must occur un
some concentration until ↑ E too much.
Compare two possible configurations at same P & T
 e.g. with & without point defects
pick lower G configuration

\[\Delta G = \Delta E + P\Delta V - T\Delta S \]

\[\Delta H \quad \text{since } \Delta V \approx 0 \text{ for solids, } \Delta H \approx \Delta E \]

Point defects
 * wrong # of chemical bonds \(\Rightarrow \Delta E \uparrow \)
 * increase in randomness \(\Rightarrow \Delta S \uparrow \)

\[S = k_b \ln \Omega \]
\(\Omega \) = # of equivalent but distinguishable ways the system can be arranged

\[\] equivalent, but not distinguishable

\[\] distinguishable, but not equivalent

\[\] distinguishable & equivalent

Want to evaluate \(\Omega \) for an arbitrary number of vacancies.

Assumption:
 only source of entropy is configurational

Other possibilities: vibrational, electronic
1 vacancy amongst a total of \(N_0 \) sites:
\[\Rightarrow \xi_1 = N_0 \]

2 vacancies amongst \(N_0 \) sites:
\[\Rightarrow \xi_2 = \frac{N_0 (N_0 - 1)}{2} \]
only \(\frac{1}{2} \) are distinguishable.

3 vacancies:
\[\Rightarrow \xi_3 = \frac{N_0 (N_0 - 1)(N_0 - 2)}{2 \cdot 3} \]

\(\eta_v \) vacancies:
\[\Rightarrow \xi_v = \frac{(N_0 \eta_v - 1)...(N_0 - \eta_v)}{\eta_v^!} = \frac{N_0^!}{(N_0 \eta_v)! \eta_v^!} \]

\(n_a \) occupied sites

\[G = G_0 + \Delta H_v \eta_v - k_b T \ln \left(\frac{N_0^!}{n_a^! n_v^!} \right) \]

with \(\eta_v \) without vacancy

system will spontaneously create vacancies so as to minimize \(G \)

evaluate \(\frac{\partial G}{\partial \eta_v} = 0 \) for large \(X \).

use Stirling's approximation: \(\ln X! \approx X \ln X - X \)

\[\Rightarrow \frac{\eta_v}{(N_0 - \eta_v)^!} \propto \frac{\eta_v}{N_0^!} = \exp \left(\frac{-\Delta H_v}{k_b T} \right) \]

by concentration: \(\frac{\text{# vacancies}}{\text{# atom sites}} \)

typical metals

at RT: \(\sim 10^{-8} \)

near \(T_m \sim 10^{-3} \) \((0.1\%) \)

also: \(\Delta H_c \gg \Delta H_v \)
\[\frac{n_r}{N_0} = \exp \left(-\frac{\Delta H_r}{k_B T} \right) \]

\[\ln \left(\frac{n_r}{N_0} \right) = -\frac{\Delta H_r}{k_B T} \]

\[\ln \left(\frac{n_r}{N_0} \right) = \ln (X_v) \]

\[(e^{-T}) \quad \frac{1}{T} \quad e^{\text{absolute temperature}} \]

Based on the assumption that all of the entropy is configurational \(\rightarrow \) randomly distributed, non-interacting defects.

Other sources of entropy, \(\Delta S_v \) per vacancy:
- vibrational
- electronic
\[\Rightarrow \frac{n_r}{N_0} = \exp \left(\frac{\Delta S_v}{k_B} \right) \cdot \exp \left(-\frac{\Delta H_r}{k_B T} \right) \]

\[\ln \left(\frac{n_r}{N_0} \right) = \frac{\Delta S_v}{k_B} + \frac{-\Delta H_r}{k_B T} \]

Now, intercept of above plot yields non-configurational entropy term.

Point defects influence many properties.

Mass diffusion coefficient is directly connected to point defects.

\[\Delta G_v = \Delta H_r - T \Delta S_v - T \Delta S_{\text{config}} \]

* add to expression on middle of page 4.